Issue |
MATEC Web Conf.
Volume 283, 2019
The 2nd Franco-Chinese Acoustic Conference (FCAC 2018)
|
|
---|---|---|
Article Number | 08004 | |
Number of page(s) | 4 | |
Section | Underwater Noise | |
DOI | https://doi.org/10.1051/matecconf/201928308004 | |
Published online | 28 June 2019 |
Estimating the parameters of the seabed using the spatial characteristics of ocean ambient noise
1 Key Laboratory of Underwater Acoustic Environment, Institute of Acoustics Chinese Academy of Science, 100190, Beijing, China
2 University of Chinese Academy of Science. 100049, Beijing, China
* Corresponding author: guoxinyi@mail.ioa.ac.cn
When solving traditional underwater problems, the boundary condition is always used to calculate the sound field. In practice, however, it is hard to get the boundary conditions of the seabed. So geoacoustics inversion is needed to acquire the parameters of the seabed. In this paper, a method estimating seabed parameters by using the spatial characteristics of ocean ambient noise is demonstrated without using matched-field processing. For the reason of the limit of the resolution of conventional beamforming (CBF), a method of synthetic array processing (SAP) is used because of some characters of cross-spectrum density matrix (CSDM). The result shows that the method of synthetic array processing enhanced the resolution of critical angle to some degree. By comparing the true bottomloss calculated by OASR, the result of traditional beamforming and the synthetic array processing, the result of synthetic array processing is closer to the true bottomloss than the result of traditional beamforming. After ensuring a range of critical angle, the sound speed of the seabed can be estimated by using Snell law. And then, an experimental data collected in Qingdao, China, 2016 is used to prove the validity of the method of synthetic array processing and estimate the local seabed parameters.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.