Issue |
MATEC Web Conf.
Volume 283, 2019
The 2nd Franco-Chinese Acoustic Conference (FCAC 2018)
|
|
---|---|---|
Article Number | 05008 | |
Number of page(s) | 3 | |
Section | Electro-Acoustics | |
DOI | https://doi.org/10.1051/matecconf/201928305008 | |
Published online | 28 June 2019 |
Finite element analysis of double resonance bender disk low frequency transducer
Acoustic Science and Technology Laboratory, Harbin Engineering University, Harbin, 150001, China
* Corresponding author: luwei@hrbeu.edu.cn
A bender disk transducer can generate low-frequency sound in a small size and light weight. But traditional bender disk transducer only works at single frequency by using first order bending mode and emits moderate levels of power. In this work, a double resonance bander disk low frequency transducer is investigated by using finite element model. The double resonance bender disk transducer consists of two segmented 3-3 mode piezoelectric ceramic disk on the both side of hollow metal disc, which could generate larger displacement in order to increase power radiation. A simple elastic mass system placed inside the hollow metal disc is introduced in the system to produce other lower resonance modes. Through the FEM calculations, it is found that the transmitting voltage response (TVR) of bender disk transducer could enhance 4dB in the first order bending mode resonance frequency, which is compared with traditional bender disk transducer with the same size. The TVR of lower resonance mode which is produced by additional central simple support elastic mass system in segmented bender disk transducer is more than 130dB. Through the optimization of finite element simulation, a double resonance bender disk transducer is designed, and its resonance frequency is 600Hz and 1kHz, respectively. The value of TVR is 130dB and 134dB corresponding to two resonance frequency. The double resonance bender disk transducer is compact dimension, low weight and it is a high performance low frequency transducer.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.