Issue |
MATEC Web Conf.
Volume 283, 2019
The 2nd Franco-Chinese Acoustic Conference (FCAC 2018)
|
|
---|---|---|
Article Number | 04004 | |
Number of page(s) | 4 | |
Section | Acoustical Imaging | |
DOI | https://doi.org/10.1051/matecconf/201928304004 | |
Published online | 28 June 2019 |
Experiment and interpretation of geomorphological detection by multi-beam sonar in Huguang-yan Maar Lake
1 Ocean Acoustic Laboratory, College of Electronic and Information Engineering, Guangdong Ocean University, Zhanjiang, 524088, China
2 State key Laboratory of Ocean Engineering, Shanghai Jiaotong University, Shanghai 200240, China
* Corresponding author: zpzhen7242@163.com
The Huguangyan Maar Lake is caused by a volcanic eruption. The original sediments at the bottom of the lake are natural yearbooks for the evolution of the earth’s climate and environment. A multi-beam sonar technique is used to scan the full coverage on the lake surface to get fine samples of echoes form the lake bottom. The information of the bathymetric data of the lake bottom is accurately described and the results of three-dimensional geomorphology imaging are given. The results show that the lake is divided into two parts, east and west, by a north-south underwater volcanic wall, and the maximum depth of water is over 22 meters. We apply a texture feature extraction method based on multi-scale fractal dimension to describe the characteristics of the sediments and roughness. Multi-scale fractal dimensions algorithm is used to extract waveform characteristics of depth samples in different directions. General distribution of sediment at the bottom of the lake is distinguished by the width of multi-scale fractal spectrum. The results obtained can be helpful for the estimation of the physical properties of sediments.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.