Issue |
MATEC Web Conf.
Volume 282, 2019
4th Central European Symposium on Building Physics (CESBP 2019)
|
|
---|---|---|
Article Number | 02010 | |
Number of page(s) | 7 | |
Section | Regular Papers | |
DOI | https://doi.org/10.1051/matecconf/201928202010 | |
Published online | 06 September 2019 |
Impact of solar reflectance of wall and road on outdoor thermal comfort - experimental study in a street canyon setup
1 School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore
2 Energy Research Institute @NTU, Nanyang Technological University, Singapore
* Corresponding author: mpwan@ntu.edu.sg
Thermal environment in an urban street canyon is primarily affected by prevailing air conditions, wind flow, solar radiation as well as thermal properties of the surrounding urban structures and pavement surfaces that affect the reflection, absorption and re-emission of solar radiation. Experiments were conducted in a 1:5 scale test setup consisting of North-South oriented street canyon (height to width ratio 1.7) located in Singapore. Test cases covering two levels solar reflectance of walls (0.35 and 0.57) and road (0.12 and 0.55) were conducted in a three-month period. Environmental parameters including direct beam and diffuse solar radiation, net radiation (incoming and outgoing shortwave and longwave radiation) and wind speed were continuously measured at the top of the canyon. Thermal comfort parameters including air temperature, relative humidity, air velocity and globe temperature were also monitored continuously inside the street canyon. When the solar reflectance of canyon surfaces increases, mean radiant temperature (MRT) reduces by up to 1.2°C during daytime and 2.5°C during the night. Such reduction leads to reduced occurrence of heat stress by 34% and 42% during the day and night times, respectively, as measured by the universal thermal comfort index (UTCI). This paper further discusses the effect of longwave radiation on MRT in the street canyon due to changes in canyon solar reflectance.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.