Issue |
MATEC Web Conf.
Volume 282, 2019
4th Central European Symposium on Building Physics (CESBP 2019)
|
|
---|---|---|
Article Number | 02005 | |
Number of page(s) | 6 | |
Section | Regular Papers | |
DOI | https://doi.org/10.1051/matecconf/201928202005 | |
Published online | 06 September 2019 |
The response of clay plaster to temperature and RH sinusoidal variations
University of Bath, BRE Centre for Innovative Construction Materials, Department of Architecture and Civil Engineering, Claverton Down, Bath, UK
* Corresponding author: v.cascione@bath.ac.uk
Hygroscopic finishing materials can be used to moderate indoor humidity levels; they have the capacity to adsorb and release moisture from and to the surrounding air, depending on the indoor relative humidity levels. To determine the moisture buffering properties of materials several protocols have been introduced. However, testing procedures are based on a time-response method, where humidity variations are under a square wave function and temperature remains constant. Therefore, the ability of these methods to simulate material behaviour under real conditions, where cyclical humidity variations are more gradual, and temperature is variable, has been called into question. The aim of this study is to perform a standard moisture buffering test, by substituting the step-variation method, with a sinusoidal humidity function at different temperatures. Clay has been used to perform the tests in a climatic chamber, where a small increase of relative humidity have been set, in order to obtain a quasi-sinusoidal curve. The relative humidity variation are limited by low humidity (33% RH) and high humidity (75% RH) and temperature variation between 18 °C and 28 °C. Materials tested present a lag in the response to the peak relative humidity to peak mass gain, which suggests an alternative way to consider the rate of sorption and the moisture storage function. The significance of the paper is to develop a laboratory test that can be more readily compared with the behaviour real buildings, which operate under more of a sine waveform
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.