Issue |
MATEC Web Conf.
Volume 280, 2019
The 5th International Conference on Sustainable Built Environment (ICSBE 2018)
|
|
---|---|---|
Article Number | 01008 | |
Number of page(s) | 12 | |
Section | Disaster Risk Management | |
DOI | https://doi.org/10.1051/matecconf/201928001008 | |
Published online | 08 May 2019 |
An Implementation of the HAZUS Method for Estimating Potential Damage of Residential Houses at Pacitan Sub-district, East Java, Indonesia due to Earthquake
1 Graduate Student of Earthquake Engineering Management, Universitas Islam Indonesia, Jl. Kaliurang Km 14.5, Yogyakarta, 55584, Indonesia
2 Professor of Civil Engineering, Universitas Islam Indonesia, Jl. Kaliurang Km 14.5, Yogyakarta, 55584, Indonesia
1 Corresponding author: dhekapratiwi@gmail.com
Indonesia is not only known as an archipelago that is rich innatural resources but also known as a disaster-prone country. Because ofits location in four major Eurasian, Indo-Australian, Pacific, and Philippinetectonic plates, natural disasters such as earthquakes, floods, landslides, volcanic eruptions, droughts, forest fires, and tsunamis often occurthroughout the region. In 2006, a large earthquake shocked the denselypopulated Yogyakarta Province and its surrounding areas. This earthquakecaused huge fatalities and damaged thousands of buildings andinfrastructures. The Pacitan region is geographically close to Yogyakarta, and is located only 120 km from the epicenter of the quake. Therefore, awareness of disaster mitigation is a critical action in reducing disasterrisks. In addition, the Pacitan Regency is a hilly and mountainous regioncovering a total area of 1,389.87 km. Its territory also includes karstregions and lowland areas. A preliminary research utilizing the HAZUSmethod was conducted for assessing the damage probability of residentialhouses at an earthquake-prone area of Pacitan sub-district. The indicativeresults show that the unreinforced masonry (URML) types are the mostdestructive followed by Wood, light frame (W1), reinforced masonry lowrise(RM2L), and reinforced masonry mid-rise (RM2M) when appliedacross three scenarios of earthquake with magnitudes of 6, 6.5, and 7, respectively.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.