Issue |
MATEC Web Conf.
Volume 277, 2019
2018 International Joint Conference on Metallurgical and Materials Engineering (JCMME 2018)
|
|
---|---|---|
Article Number | 02001 | |
Number of page(s) | 7 | |
Section | Data and Signal Processing | |
DOI | https://doi.org/10.1051/matecconf/201927702001 | |
Published online | 02 April 2019 |
CNN and RNN mixed model for image classification
1
College of Computer and Control Engineering, Nankai University, Tianjin, China
2
Laboratory for Financial Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
* Corresponding author: shaoxl@nankai.edu.cn
In this paper, we propose a CNN(Convolutional neural networks) and RNN(recurrent neural networks) mixed model for image classification, the proposed network, called CNN-RNN model. Image data can be viewed as two-dimensional wave data, and convolution calculation is a filtering process. It can filter non-critical band information in an image, leaving behind important features of image information. The CNN-RNN model can use the RNN to Calculate the Dependency and Continuity Features of the Intermediate Layer Output of the CNN Model, connect the characteristics of these middle tiers to the final full-connection network for classification prediction, which will result in better classification accuracy. At the same time, in order to satisfy the restriction of the length of the input sequence by the RNN model and prevent the gradient explosion or gradient disappearing in the network, this paper combines the wavelet transform (WT) method in the Fourier transform to filter the input data. We will test the proposed CNN-RNN model on a widely-used datasets CIFAR-10. The results prove the proposed method has a better classification effect than the original CNN network, and that further investigation is needed.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.