Issue |
MATEC Web Conf.
Volume 274, 2019
RICON17 - REMINE International Conference Valorization of Mining and other Mineral Wastes into Construction Materials by Alkali-Activation
|
|
---|---|---|
Article Number | 01001 | |
Number of page(s) | 4 | |
Section | Mix Design of Alkali Activated Materials (AAM) on the Base of Different Wastes | |
DOI | https://doi.org/10.1051/matecconf/201927401001 | |
Published online | 22 February 2019 |
Utilization of sulphidic mine tailings in alkali-activated materials
1
Fibre and Particle Engineering, Univeristy of Oulu, PO Box 4300, FIN-90014 Finland
2
Faculty of Materials Science and Ceramics / wimic, AGH University of Science and Technology 30-059 Krakow, Poland
3
Dept. Civil Engineering/CICECO, University of Aveiro, 3810-193 Aveiro, Portugal
* Corresponding author: jenni.kiventera@oulu.fi
Disposal of mine tailings is one of the most important environmental issues during the mining lifetime. Especially sulphidic tailings can cause environmental and ecological risks because of their tendency to oxidize in the presence of water or air. Because of small particle size and harmful chemical properties, utilization possibilities of sulphidic mine tailings are limited. The aim of the present study was to develop technologies to utilize sulphidic mine tailings in alkali activated materials. Alkali-activated materials also known as geopolymers are nanosized zeolite type or slightly amorphous materials comparable to traditional Portland cement concrete, which can physically encapsulate or chemically stabilize the hazardous elements such as heavy metals into the 3D structure. Mine tailing based geopolymer aggregates were successfully produced from sulphidic mine tailings with good physical properties. The geopolymer aggregates performed as a concrete aggregate comparable to commercial lightweight aggregates. In addition, geopolymer mortars were prepared from mine tailings. In mortar application, there is a need to add some co-binder such as blast furnace slag in order to achieve high strength for the material. The mine tailing based geopolymer structure has an ability to stabilize a large number of cationic species into the structure while some anionic species were not able to immobilize by alkaline activation.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.