Issue |
MATEC Web Conf.
Volume 272, 2019
2018 2nd International Conference on Functional Materials and Chemical Engineering (ICFMCE 2018)
|
|
---|---|---|
Article Number | 01017 | |
Number of page(s) | 7 | |
DOI | https://doi.org/10.1051/matecconf/201927201017 | |
Published online | 13 March 2019 |
Simulation of vertical tidal turbine based on OpenFOAM and influence of inlet turbulence
1 School of Oil & Natural Gas Engineering, Southwest Petroleum University, Chengdu 610500, China
2 School of Mechanical Engineering, Southwest Petroleum University, Chengdu 610500, China
* Corresponding author: andrea_liuyy@163.com
This paper first introduces the basic theory of CFD method, including basic control equations, finite volume method, control equation solving algorithm and turbulence model selection. Second, based on OpenFOAM, an open-source fluid mechanics software, a numerical simulation method of vertical axis tidal turbine was proposed by using k-ω SST turbulence model and PIMPLE algorithm. The hydrodynamic characteristics of the vertical axis turbine were studied, and the calculation results were compared with experiments. The higher consistency proves the feasibility of the numerical simulation method proposed in this paper. Finally, the influence of inlet turbulence on numerical simulation was explored, and a set of effective CFD simulation strategies was concluded, which provided a valuable reference for future CFD simulation and research on vertical axis tidal turbines.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.