Issue |
MATEC Web Conf.
Volume 270, 2019
The 2nd Conference for Civil Engineering Research Networks (ConCERN-2 2018)
|
|
---|---|---|
Article Number | 04020 | |
Number of page(s) | 7 | |
Section | Water Resources Engineering and Management | |
DOI | https://doi.org/10.1051/matecconf/201927004020 | |
Published online | 22 February 2019 |
FVCOM model simulation of local scouring around bridge pile
1
Magister Study Program of Civil Engineering, Faculty of Civil and Environmental Engineering, Institut Teknologi Bandung, Bandung, Indonesia
2
Center for Water Resources Development, Institute for Research and Community Services, Institut Teknologi Bandung, Bandung, Indonesia
* Corresponding author: sonyherdiansyah@gmail.com
Scouring is one of many damages that water can cause. Scouring can occur as a consequence of bridge pile existence. The problem on local scour around single pier will be studied by using FVCOM numerical model. This study objective is to find out how accurate FVCOM model to predict local scour behavior. FVCOM model is based on the finite volume method to solve Navier Stokes, Meyer Peter Muller, and Exner equations. FVCOM computed numerical result then will be verified with computed and measured data in previous numerical (FSUM model) and experimental study. Results from this study show FVCOM model were successfully simulated typical features of local scour around piers such as downflow and wake vortex, but failed to simulate horseshoe vortex. Both computed numerical (FSUM and FVCOM) results are then compared with measured experimental data for its magnitude and time-series of maximum scour depth. FVCOM result shows value 0.99 r-squared correlation and 5.96 percent average error, and FSUM result shows value 0.98 r-squared correlation and 6.82 percent average error. Therefore, it can be deduced that FVCOM successfully predict local scour depth and its time-series and proven that FVCOM is more accurate than FSUM model.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.