Issue |
MATEC Web Conf.
Volume 268, 2019
The 25th Regional Symposium on Chemical Engineering (RSCE 2018)
|
|
---|---|---|
Article Number | 06020 | |
Number of page(s) | 3 | |
Section | Process for Energy and Environment | |
DOI | https://doi.org/10.1051/matecconf/201926806020 | |
Published online | 20 February 2019 |
Production of activated carbon from corn cobs and mango kernels via H3PO4 activation and mediated hydrothermal treatment
Department of Chemical Engineering, College of Engineering, Adamson University, 900 San Marcelino, Ermita, Manila 1000, Philippines
Corresponding author: erison.roque@adu.edu.ph
In this study, the activated carbon produced from mango kernels and corn cobs by impregnating the hydrothermally treated raw materials with 85% H3PO4 were characterize for their physical surface morphology and types of surface functional groups using SEM and FT-ir, respectively. Six samples of activated carbon were submerged for 1 hour, the second sample for 2 hours, and the third sample for 3 hours. SEM results showed that both KAC (Kernel Activated Carbon) and CAC (Corn Activated Carbon) had increasing roughness and irregularity along with residence time of the samples. Results from FT-ir (Fourier-transform infrared spectroscopy) testing of the mango kernels samples showed that a C-O stretch, C-H, C=O stretch, and C-N stretch on the surface. While corncobs consist of C-H bend, and O-H bend for the 1-HR sample. The 2-HR and 3-HR samples consist of C-O stretch, C-H wag, C-N stretch. Analysis of the relationship between residence time and adsorptive capacity was done using AAS via batch adsorption in a tri-metal solution of Cu(Copper), Ni(Nickel), and Pb(Lead) with results that showed CAC and KAC, with soaking time of 3 hours is a good adsorbent of Copper and Nickel, while soaking time of 2 hours yields the best adsorption conditions for both CAC and KAC.
© The Authors, published by EDP Sciences, 2019
This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.