Issue |
MATEC Web Conf.
Volume 265, 2019
International Geotechnical Symposium “Geotechnical Construction of Civil Engineering & Transport Structures of the Asian-Pacific Region” (GCCETS 2018)
|
|
---|---|---|
Article Number | 05024 | |
Number of page(s) | 6 | |
Section | Foundations and Underground Structures | |
DOI | https://doi.org/10.1051/matecconf/201926505024 | |
Published online | 30 January 2019 |
Numerical studies of steel pipe sheet pile
Samara State Technical University, Academy of Architecture and Civil Engineering, Molodogvardeyskaya St., 194, Samara, 443001, Russia
* Corresponding author: avu75@mail.ru
The sheet pile wall (SPW) is carried out from pipes of big diameter which plunge into soil very deeply. Depth of pipes is the settlement size depending on a set of parameters. Depth of pipes provides rigidity and reliability of a construction. SPW has a high rate of a consumption of steel on his production. Authors of the present article suggest to reduce a material capacity of SPW at the expense of reduction of depth of blockage of every second pipe. Decrease in depth of blockage of separate pipes is carried out at preservation of the maximum depth of blockage of other pipes. The design similar to a «comb» because of alternation of long and short pipes turns out. Such decision allows to reduce the total depth of blockage of pipes and as a result leads to decrease in a material capacity and cost of a construction in general. The problem of search of possible reduction of length of a part of pipes is the purpose of the real research. As solutions of the put problem we suggest to execute numerical experimenting in iterative statement with use of modern software. Results of numerical researches of SPW are presented in the present article. The presented results allow to draw a conclusion on efficiency of the solution on decrease in a material capacity of SPW proposed by authors. For obtaining the generalized decision and obtaining undoubtedly the best result of a design of SPW authors consider necessary to execute problem definition in the form of parametrical optimization.
© The Authors, published by EDP Sciences, 2019
This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.