Issue |
MATEC Web Conf.
Volume 264, 2019
2nd International Conference on Composite Material, Polymer Science and Engineering (CMPSE2018)
|
|
---|---|---|
Article Number | 03003 | |
Number of page(s) | 5 | |
Section | Product Manufacturing (Recycle, Material Process, Machining) | |
DOI | https://doi.org/10.1051/matecconf/201926403003 | |
Published online | 30 January 2019 |
Disintegration and Recycling of Multi-layered Glass Fiber Reinforced Polymer Composites via Superheated Steam
Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino,
Wakamatsu-ku,
Kitakyushu,
808-0196 Fukuoka,
Japan
a Corresponding author: nishida@lsse.kyutech.ac.jp
To increase viability of recycling of robust and large-scale multi-layered glass fiber reinforced polymer composites (GFRPs), disintegration of the multi-layered GFRPs and recovery of fibers/resin-derived materials were investigated using superheated steam (SHS) under normal pressure where a very quick heat transfer to GFRP was possible. The SHS treatment of 4 different types of multi-layered GFRP products were conducted at 350 °C in an oxygen-free environment up to 3 hours. The SHS treated GFRPs were easily disintegrated into each layer. The separated layers were divided into components: glass fibers, oligomers, and inorganic fillers after subsequent thermal and ultrasonication processes. Finally, clear glass fibers were recovered, and matrix resin was also recovered as soluble oligomers consisting of phthalates, glycols, and styrene units due to partial chain cleavage of cured resin. These results clearly showed the viability for the recycling of actual large-scale multi-layered GFRP products.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.