Issue |
MATEC Web Conf.
Volume 259, 2019
2018 6th International Conference on Traffic and Logistic Engineering (ICTLE 2018)
|
|
---|---|---|
Article Number | 02007 | |
Number of page(s) | 5 | |
Section | Intelligent Transportation and Management | |
DOI | https://doi.org/10.1051/matecconf/201925902007 | |
Published online | 25 January 2019 |
Integration of Genetic Algorithm and Support Vector Machine to Predict Rail Track Degradation
1 Civil and Infrastructure Engineering Discipline, School of Engineering, RMIT University, Australia
2 Asset Planning and Visualisation, Yarra trams, Australia
Gradual deviation in track gauge of tram systems resulted from tram traffic is unavoidable. Tram gauge deviation is considered as an important parameter in poor ride quality and the risk of train derailment. In order to decrease the potential problems associated with excessive gauge deviation, implementation of preventive maintenance activities is inevitable. Preventive maintenance operation is a key factor in development of sustainable rail transport infrastructure. Track degradation prediction modelling is the basic prerequisite for developing efficient preventive maintenance strategies of a tram system. In this study, the data sets of Melbourne tram network is used and straight rail tracks sections are examined. Two model types including plain Support Vector Machine (SVM) and SVM optimised by Genetic Algorithm (GA- SVM) have been applied to the case study data. Two assessment indexes including Mean Squared Error (MSE) and the coefficient of determination (R2) are employed to evaluate the performance of the proposed models. Based on the results, GA-SVM model produces more accurate outcomes than plain SVM model.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.