Issue |
MATEC Web Conf.
Volume 258, 2019
International Conference on Sustainable Civil Engineering Structures and Construction Materials (SCESCM 2018)
|
|
---|---|---|
Article Number | 02012 | |
Number of page(s) | 11 | |
Section | Construction Management, Construction Method and System, Optimization and Innovation in Structural Design | |
DOI | https://doi.org/10.1051/matecconf/201925802012 | |
Published online | 25 January 2019 |
Progressive Collapse Assessment: A review of the current energy-based Alternate Load Path (ALP) method
1 Universiti Teknologi Mara (UiTM), Shah Alam, Selangor
2 University of Surrey, Guildford, United Kingdom
* Corresponding author: hazrina.uitm@gmail.com
The Alternate Load Path (ALP) is a useful method that has generated a considerable recent research interest for the assessment of progressive collapse. The outcome of the ALP analysis can be assessed either using the force-based approach or the energy-based approach. The Unified Facilities Criteria (UFC- 4- 023-03) of progressive collapse guideline - have outlined that the force-based approach can either be analysed using static or dynamic analysis. The force-based approach using static analysis is preferable as it does not require a high level of skill and experience to operate the software plus no effort is required in scrutinising the validity of the analysis results output. However, utilising the static approach will eliminate the inertial effect in capturing the actual dynamic response of the collapsed structure. In recent years, the development of the energy-based progressive collapse assessment is attracting widespread interest from researchers in the field; as the approach can produce a similar structural response with the force-based dynamic analysis by only using static analysis. Most of the current energy-based progressive collapse assessments are developed following the requirements which are given in the progressive collapse guidelines provided by the Unified Facilities Criteria. However, little attention is given to the development of the energy-based approach using the Eurocode standards as a base guideline. This article highlights the merits of utilising the energy-based approach against the force-based approach for a collapsed structure and explains the collapse mechanism of a steel frame in the perspective of the energy concept. The state of the art of energy-based progressive collapse assessment for a structural steel frame is reviewed. The comprehensive review will include insights on the development of the energy-based method, assumptions, limitations, acceptance criterion and its applicability with the European standards. Finally, potential research gaps are discussed herein.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.