Issue |
MATEC Web Conf.
Volume 258, 2019
International Conference on Sustainable Civil Engineering Structures and Construction Materials (SCESCM 2018)
|
|
---|---|---|
Article Number | 01007 | |
Number of page(s) | 7 | |
Section | Green Construction Materials and Technologies, Environmental Impact and Green Design, Local and Recycled Materials | |
DOI | https://doi.org/10.1051/matecconf/201925801007 | |
Published online | 25 January 2019 |
The pull-out test on knit bamboo reinforcement embedded into concrete beam
Department of Civil Engineering, Brawijaya University, 65145 MT Hartono 167 Malang, Indonesia
* Corresponding author: devi@ub.ac.id
The pull-out test is generally conducted to obtain accurately the carrying capacity of the flexural strength of the knit bamboo reinforced concrete beam, which is more determined by the bonding strength than the tensile strength of reinforcement in concrete. Bamboo bar with braid knit which was coated with sikadur as bonding agent based on selected epoxy resin was expected to improve a good friction with concrete. In the pull-out test method, a hydraulic jack was applied to encourage bamboo embedded into a pair of concrete blocks, whose size was 15cm x 30cm x 40cm. The experimental variable of specimens were types of knitted bamboo, and type of coating. Based on the test results, either the bond strength or the tensile strength, which was calculated based on the failure mechanism, increased with respect to the concrete quality. The compressive strength of concrete was averaged as much as 25,97 MPa. The usage of outer skin surface on the cutting braid knit bamboo (type 1), which was coated with sikadur experimentally could increase the pull-out load. In the pull-out test, bond failure occurred with using of the plain bamboo bar with the bond stress of 1.18 MPa, while tensile failure occurred with using of knit bar type 1 with peak tensile strength of 85.84 Mpa.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.