Issue |
MATEC Web Conf.
Volume 252, 2019
III International Conference of Computational Methods in Engineering Science (CMES’18)
|
|
---|---|---|
Article Number | 09011 | |
Number of page(s) | 5 | |
Section | Probability, Statistics Quality Control | |
DOI | https://doi.org/10.1051/matecconf/201925209011 | |
Published online | 14 January 2019 |
Potential ecological risk assessment and prediction of heavy-metal pollution of soil surrounding the drilling waste deposition site
Lublin University of Technology, Faculty of Environmental Engineering, Nadbystrzycka 40B Street, 20-618 Lublin, Poland
* Corresponding author: j.kujawska@pollub.pl
Owing to their toxicity, heavy metals constitute a serious threat to the environment. In the pages that follow, we will report the results of evaluation of the potential ecological risk and trend of soil heavy metal pollution surrounding the drilling waste deposition site in western Poland. The concentrations of heavy metals: Cd, Cr, Cu, Pb were determined by inductively coupled plasma optical emission spectrometry. The procedure used for potential ecological risk assessment was as proposed by Hakanson (1980). The calculated potential ecological risk factors come in the following order EiR(Cd)>EiR(Pb)>EiR(Cu)>EiR(Cr), which shows that Cd is the most important factor leading to risk. The uniform model was employed to determine the time in which Cd concentration will exceed the permissible concentration level, as regulated by Polish Law. The Pearson correlation coefficient was employed along with the correspondence analysis in order to determine the relationships between heavy metal concentrations.
© The Authors, published by EDP Sciences, 2019
This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.