Issue |
MATEC Web Conf.
Volume 252, 2019
III International Conference of Computational Methods in Engineering Science (CMES’18)
|
|
---|---|---|
Article Number | 05003 | |
Number of page(s) | 6 | |
Section | Computer Simulations of Processes Phenomena | |
DOI | https://doi.org/10.1051/matecconf/201925205003 | |
Published online | 14 January 2019 |
Experimental and numerical investigation on the components of a pantograph slider suspension
AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, Department of Robotics and Mechatronics, Al. A. Mickiewicza 30, 30-059 Krakow, Poland
* Corresponding author: zdziebko@agh.edu.pl
Mechanical properties of the components of a pantograph’s slider suspension system have large influence on the quality of pantograph-catenary interaction. In the paper the authors present the results of their experimental research on the springs that are used in the pantograph being currently in operation in Europe. Static and dynamic tests were performed, which were aimed at determining the stiffness and damping coefficients respectively. Subsequently, the procedure for automated numerical model building for the pantograph’s springs was prepared employing the Python programming language and the MSC Marc solver. When a spring model is build (accordingly to the geometric properties of the springs used in tests), the elaborated algorithm iteratively tunes the material properties and computes static and dynamic load-cases, making direct reference to the experimental procedure. After completing several iterations the numerical model is finally validated, and proper material properties, as the Young modulus and the coefficients of Rayleigh damping model, are found. Then, the obtained model can be used to determine the damping and stiffness coefficients for springs characterizing various diameters, wire diameters, numbers of turns, etc. The presented modelling tool is useful for determining the pantograph sliders suspension characteristics.
© The Authors, published by EDP Sciences, 2019
This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.