Issue |
MATEC Web Conf.
Volume 232, 2018
2018 2nd International Conference on Electronic Information Technology and Computer Engineering (EITCE 2018)
|
|
---|---|---|
Article Number | 04024 | |
Number of page(s) | 5 | |
Section | Circuit Simulation, Electric Modules and Displacement Sensor | |
DOI | https://doi.org/10.1051/matecconf/201823204024 | |
Published online | 19 November 2018 |
Construction and Application of Indoor Video Surveillance System Based on Human Activity Recognition
1
Sichuan Agricultural University, College of Information Engineering, 625000 Yaan, China
2
The Lab of Agricultural Information Engineering, Sichuan Key Laboratory, 625000 Yaan, China
a Corresponding author: wangmantao@sicau.edu.cn
With the growth of building monitoring network, increasing human resource and funds have been invested into building monitoring system. Computer vision technology has been widely used in image recognition recently, and this technology has also been gradually applied to action recognition. There are still many disadvantages of traditional monitoring system. In this paper, a human activity recognition system which based on the convolution neural network is proposed. Using the 3D convolution neural network and the transfer learning technology, the human activity recognition engine is constructed. The Spring MVC framework is used to build the server end, and the system page is designed in HBuilder. The system not only enhances efficiency and functionality of building monitoring system, but also improves the level of building safety.
© The Authors, published by EDP Sciences, 2018
This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.