Issue |
MATEC Web Conf.
Volume 232, 2018
2018 2nd International Conference on Electronic Information Technology and Computer Engineering (EITCE 2018)
|
|
---|---|---|
Article Number | 03052 | |
Number of page(s) | 6 | |
Section | Algorithm Study and Mathematical Application | |
DOI | https://doi.org/10.1051/matecconf/201823203052 | |
Published online | 19 November 2018 |
AGV optimal path planning based on improved ant colony algorithm
School of Mechanical and Automotive Engineering, Shanghai University of Engineering and Technology, Longteng Road No.333, 201620, Shanghai, China
* Corresponding author: ChengWei He: 1661381718@qq.com
Using the traditional Ant Colony Algorithm for AGV path planning is easy to fall into the local optimal solution and lacking the capability of obstacle avoidance in the complex storage environment. In this paper, by constructing the MAKLINK undirected network routes and the heuristic function is optimized in the Ant Colony Algorithm, then the AGV path reaches the global optimal path and has the ability to avoid obstacles. According to research, the improved Ant Colony Algorithm proposed in this paper is superior to the traditional Ant Colony Algorithm in terms of convergence speed and the distance of optimal path planning.
© The Authors, published by EDP Sciences, 2018
This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.