Issue |
MATEC Web Conf.
Volume 232, 2018
2018 2nd International Conference on Electronic Information Technology and Computer Engineering (EITCE 2018)
|
|
---|---|---|
Article Number | 02047 | |
Number of page(s) | 6 | |
Section | 3D Images Reconstruction and Virtual System | |
DOI | https://doi.org/10.1051/matecconf/201823202047 | |
Published online | 19 November 2018 |
Machine Reading Comprehension Based On Multi-headed attention Model
1
College of Systems Engineering, National University of Defense Technology, 410073 Changsha, China
2
School of Information Science and Engineering, Ocean University of China, Songling Road No. 238, 266100 Qingdao, China
a Corresponding author: jiejiang@nudt.edu.cn
Machine Reading Comprehension (MRC) refers to the task that aims to read the context through the machine and answer the question about the original text, which needs to be modeled in the interaction between the context and the question. Recently, attention mechanisms in deep learning have been successfully extended to MRC tasks. In general, the attention-based approach is to focus attention on a small part of the context and to generalize it using a fixed-size vector. This paper introduces a network of attention from coarse to fine, which is a multi-stage hierarchical process. Firstly, the context and questions are encoded by bi-directional LSTM RNN; Then, more accurate interaction information is obtained after multiple iterations of the attention mechanism; Finally, a cursor-based approach is used to predicts the answer at the beginning and end of the original text. Experimental evaluation of shows that the BiDMF (Bi-Directional Multi-Attention Flow) model designed in this paper achieved 34.1% BLUE4 value and 39.5% Rouge-L value on the test set.
© The Authors, published by EDP Sciences, 2018
This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.