Issue |
MATEC Web Conf.
Volume 232, 2018
2018 2nd International Conference on Electronic Information Technology and Computer Engineering (EITCE 2018)
|
|
---|---|---|
Article Number | 02044 | |
Number of page(s) | 6 | |
Section | 3D Images Reconstruction and Virtual System | |
DOI | https://doi.org/10.1051/matecconf/201823202044 | |
Published online | 19 November 2018 |
A novel image registration method for InISAR 3D imaging
College of Electronic Science, National University of Defense Technology, 410073 Changsha, China
a Corresponding author: zibo_travel@163.com
Image registration is a key intermediate step for Interferometric Inverse Synthetic Aperture Radar (InISAR) three-dimensional (3D) imaging. It arranges the same scatterers of the target on the same pixel cell in different ISAR images, which makes the interferometric processing carried on between the same scatterers to obtain its 3D coordinates. This paper proposes a novel ISAR image registration method of three steps. Firstly, chirp Fourier transform is used to estimate the rotational angular velocity of the target. Secondly, the compensation phase is constructed, according to the rotational angular velocity, to eliminate the wave path difference between different radars echoes. Finally, two-dimensional (2D) Fourier transform is used to yield registered ISAR images. The proposed method achieves the ISAR image registration through phase compensation in echo field, therefore, no extra computation is needed in image field. The experiment results demonstrate the advantages of the proposed method in precision, computation efficiency and practicability.
© The Authors, published by EDP Sciences, 2018
This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.