Issue |
MATEC Web Conf.
Volume 232, 2018
2018 2nd International Conference on Electronic Information Technology and Computer Engineering (EITCE 2018)
|
|
---|---|---|
Article Number | 01060 | |
Number of page(s) | 9 | |
Section | Network Security System, Neural Network and Data Information | |
DOI | https://doi.org/10.1051/matecconf/201823201060 | |
Published online | 19 November 2018 |
Research on Software Multiple Fault Localization Method Based on Machine Learning
1
Beijing Institute of Control Engineering, No. 16, South Third Street, Zhongguancun, Haidian District, Beijing, China
2
Beijing Sunwise Information Technology Ltd., No. 16, South Third Street, Zhongguancun, Haidian District, Beijing, China
a Corresponding author: ccchappiness@yeah.net
Fault localization is one of time-consuming and labor-intensive activity in the debugging process. Consequently, there is a strong demand for techniques that can guide software developers to the locations of faults in a program with high accuracy and minimal human intervention. Despite the research of neural network and decision tree has made some progress in software multiple fault localization, there is still a lack of systematic research on various algorithms of machine learning. Therefore, a novel machine-learning-based multiple faults localization is proposed in this paper. First, several concepts and connotation of software multiple fault localization are introduced, move on to the status and development trends of the research. Next, the principles of machine learning classification algorithm are explained. Then, a software multiple fault localization research framework based on machine learning is proposed. The process is taking the Mid function as an example, compares and analyzes the performance of 22 machine learning models in software multiple fault localization. Finally, the optimal machine learning method is verified in the multiple fault localization of the Siemens suite dataset. The experimental results show that the machine learning based on Random Forest algorithm has more accuracy and significant positioning efficiency. This paper effectively solved the problem of large amount of program spectrum data and multi-coupling fault location, which is very helpful for improving the efficiency of software multiple fault debugging.
© The Authors, published by EDP Sciences, 2018
This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.