Issue |
MATEC Web Conf.
Volume 225, 2018
UTP-UMP-VIT Symposium on Energy Systems 2018 (SES 2018)
|
|
---|---|---|
Article Number | 06017 | |
Number of page(s) | 16 | |
Section | Economic, environmental, social, policy and utilization aspects of energy | |
DOI | https://doi.org/10.1051/matecconf/201822506017 | |
Published online | 05 November 2018 |
Wear Mechanism of Wear Resistant HVOF Thermal Spray Coating: Chromium Carbide Nickel Chrome on 304 AISI Steel
1
Mechanical Engineering Department, Universiti Teknologi PETRONAS, 32610 Bandar Seri Iskandar, Perak, Malaysia.
2
Department of Mechanical Engineering, ZCOER, Narhe, Pune, Maharashtra 411041, India
* Corresponding author: norlailiamir@utp.edu.my
One of the common ways to overcome wear is by surface modification which is a coating process. The application of cermet of chromium (Cr carbide) in Nickel-Chromium (Ni-Cr) matrix is widely used as coating material since it provides high wear resistant. Besides, thermal spray process is widely known as the most suitable technique to produce cermet coating. In this study, chromium carbide-nickel chrome (Cr3C2- NiCr) powder is used as the feedstock. High Velocity Oxy Fuel (HVOF) thermal spraying is used to deposit the coating on mild steel substrate to study the behaviour of wear of the coating. The wear test is conducted by using TABER Linear Abrasion Wear Test machine. The wear rate of both coated and uncoated pin is measured by measuring the weight loss of the samples. The Cr3C2-NiCr coated pins have shown less weight loss than the uncoated pins. The lifetime prediction of Cr3C2-NiCr coated pins is higher than the uncoated pins at different time duration and applied loads. The results showed that the wear resistant properties of Cr3C2-NiCr coated pins are higher than the uncoated pins. Scanning Electron Microscopic (SEM) integrated with Energy-dispersive X-ray spectroscopy (EDS) are used to determine the microstructure of Cr3C2-NiCr coating. The microstructure of Cr3C2-NiCr coated pin after the wear testing showed no presence of crack and the wear track was homogenous.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.