Issue |
MATEC Web Conf.
Volume 225, 2018
UTP-UMP-VIT Symposium on Energy Systems 2018 (SES 2018)
|
|
---|---|---|
Article Number | 06010 | |
Number of page(s) | 9 | |
Section | Economic, environmental, social, policy and utilization aspects of energy | |
DOI | https://doi.org/10.1051/matecconf/201822506010 | |
Published online | 05 November 2018 |
Study of Physical Properties and Shock Absorption Abilities of Starch Polymer Foam as Cushioning Material for Packaging
Mechanical Engineering Department, Universiti Teknologi PETRONAS, 32610 Bandar Seri Iskandar, Perak, Malaysia.
* Corresponding author: kamalai@utp.edu.my
Lack of information about the formulation and fabrication process of starch polymer foam and lack of study in the shock absorption ability of starch polymer foam were the reasons this research was executed. In this project starch polymer foam was produced to be used as cushioning material for packaging. Starch polymer foam were developed from starch, polyvinyl alcohol (PVA), urea, citric acid, and deionised water. Water amount with drying and curing process were the variables manipulated to produce the best starch polymer foam. It was determined then, that the optimized ratio of starch:PVA:citric acid was 1:1:4. The amount of water used was 10 ml/gram of starch/PVA weight. The suitable foaming mixing was done at a speed of 1500 rpm for 40 minutes. Drying process was done at 70°C for 24 hours, followed by curing process at 100°C for 1 hour to produce closed-cell foam. While for the open-cell foam, the foam was dried and cured at 100ºC for 6 hours. The open-cell and closed-cell foams produced were cut to 6 cm height x 6 cm width x 0.5 cm thick. The average density was calculated and then the foams were subjected to weight drop destructive test. The test was done by placing a foam on top of a piece of mirror, and a weight is dropped onto the foam, with increasing height until the mirror break. Three weights were used with mass of 50 g, 100 g and 200 g. The starch foams were compared to polyurethane and polystyrene foams in terms of the minimum height that can cause the mirror to break. The results showed that starch closed-cell foam absorbed the highest impact energy followed by polystyrene foam, starch open-cell foam and polyurethane foam.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.