Issue |
MATEC Web Conf.
Volume 225, 2018
UTP-UMP-VIT Symposium on Energy Systems 2018 (SES 2018)
|
|
---|---|---|
Article Number | 04008 | |
Number of page(s) | 6 | |
Section | Renewable and Non-renewable Energy Resources and Power Generation | |
DOI | https://doi.org/10.1051/matecconf/201822504008 | |
Published online | 05 November 2018 |
Impact of Soiling Rate on Solar Photovoltaic Panel in Malaysia
1
Department of Mechanical Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
2
Addis Ababa Science and Technology University, College of Electrical and Mechanical Engineering
3
Centre for Automotive Research & Electric Mobility (CAREM), Research and Innovation, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak.
* Corresponding author: shaharin@utp.edu.my
There are some weaknesses of using solar PV system especially when there is issue of soiling on the surface of solar PV panel. The consequences for absence of this such study can cause unanticipated cost in the operation of solar PV panel. The objective of this project is to study the trend of soiling rate over different time period and its effect on the performance of solar PV panel in Malaysia and to develop a simple prediction model for cleaning interval of solar PV system in Malaysia. The study was conducted on real-time basis on a building’s roof. Measurements of solar irradiance, voltage, current and the mass of dust collected were performed from both clean and dirty panels. It was discovered that the Monthly Test was significant with 4.53% of performance drop. Further analysis was conducted by running prediction model for cleaning interval. Intersection of graph plotting and fixed cleaning cost gives answer of cleaning interval that can be performed. It can be concluded that for every two and half month is the recommended time interval to perform regular cleaning to maximise electrical power generation by solar PV system in Malaysia.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.