Issue |
MATEC Web Conf.
Volume 225, 2018
UTP-UMP-VIT Symposium on Energy Systems 2018 (SES 2018)
|
|
---|---|---|
Article Number | 03018 | |
Number of page(s) | 17 | |
Section | Energy Management and Conservation | |
DOI | https://doi.org/10.1051/matecconf/201822503018 | |
Published online | 05 November 2018 |
Thermal Diffusion Performance of a Diffuser by various Guide Vanes configurations
1
Mechanical Engineering Department, Curtin University, Sarawak Malaysia.
2
Mechanical Engineering Department, Universiti Teknologi PETRONAS, 32610 Bandar Seri Iskandar, Perak, Malaysia.
* Corresponding author: hussain_kayiem@utp.edu.my
The use of vane-less diffuser with large diffusion angle has shown a setback in the diffusion process of high temperature working fluids. The hot gas flow was characterized as a jet-like flow. This paper presents problem, encountered practically, using a vane-less diffuser with large diffusion angle and how the problem is solved by CFD simulation. The investigated thermal diffuser has a length of 0.3 m, an inlet to outlet crosssectional area ratio of 1:25 and diffusion angle of 115.44o. To resolve the jet-like flow problem and poor distribution of the flow temperature at the diffuser outlet, the study suggested the use of guide-vanes into the diffuser. The study employed CFD simulation by ANSYS-FLUENT software to analyze the flow and thermal process in the diffuser. Three different shapes of guide vanes; block-shaped, oval-shaped and airfoil-shaped were considered in this study and at different vanes diffusion angles, as well as vane-less case, which was adopted as the bench mark case. The simulation results of the velocity, temperature and pressure at the diffuser outlet were compared for all cases. It was found that the guide vanes with symmetrical airfoil profile provided the best performance with most uniform distribution at the outlet of the diffuser. Also, the airfoil-shaped guide vanes resulted in lower pressure losses compared to the block-shaped and oval-shaped guide vanes. According to the analysis results, the diffuser was redesigned to improve the diffusion and temperature distribution across the diffuser outlet.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.