Issue |
MATEC Web Conf.
Volume 225, 2018
UTP-UMP-VIT Symposium on Energy Systems 2018 (SES 2018)
|
|
---|---|---|
Article Number | 01001 | |
Number of page(s) | 8 | |
Section | Fundamental and Applied Thermal Energy | |
DOI | https://doi.org/10.1051/matecconf/201822501001 | |
Published online | 05 November 2018 |
Prediction of the Temperature Distribution During Friction Stir Welding (Fsw) With A Complex Curved Welding Seam: Application In The Automotive Industry
Department of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 32610, Perak Darul Ridzuan, Malaysia
* Corresponding author: mokhtar_awang@utp.edu.my
Advanced welding of complex geometries promises significant development in the automotive industry. Friction Stir Welding (FSW) as a solid-state welding technique has spread quickly since its initial development by TWI in 1991. It has found applications in various industries, including railway, automotive, maritime and aerospace. Temperature during FSW plays a significant role, therefore thermal analysis of the process provides the opportunity to understand the process in detail, and also allows one to save energy and cost as well. However, experimental investigation of the thermal behaviour is challenging, because of inaccuracy in the measuring instruments. Thus, Finite Element Methods (FEMs) offer an appropriate approach for thermal modelling of the process. There is also a dilemma in defining the perpendicular movement of the tool on a curved surface. To clarify the problem, the tool needs to follow a regular pattern during curved movement, and it should have a perpendicular position to the surface at each point. However, previous literature modelled only a single point movement for the tool. Thus, the finite element package needs to be modified to develop a precise perpendicular movement for the tool. In this paper, a VDISP user defined subroutine is used to modify Abaqus® software for thermal analysis of a complex curved plate. The results of the paper show that the problem of the perpendicular movement of the tool is resolved and the thermal behaviour of the FSW is done with remarkable accuracy.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.