Issue |
MATEC Web Conf.
Volume 220, 2018
2018 The 2nd International Conference on Mechanical, System and Control Engineering (ICMSC 2018)
|
|
---|---|---|
Article Number | 06004 | |
Number of page(s) | 4 | |
Section | Intelligent Robot and Control Technology | |
DOI | https://doi.org/10.1051/matecconf/201822006004 | |
Published online | 29 October 2018 |
Trajectory Planning of a 6D Robot based on Meta Heuristic Algorithms
1 Sustainable and Infrastructure Research and Development Center, Department of Mechancial Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen, Thailand
2 Department of Industrial Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen, Thailand
In this work, several established meta-heuristics (MHs) were employed for solving 6-DOF robot trajectory planning. A fourth order polynomial function is used to represent a motion path of the robot from initial to final points while an optimisation problem is posed to minimise travelling time subject to velocity, acceleration and jerk constraints. The design variables are joint velocities and accelerations at intermediate positions, and moving time from the initial position to the intermediate position and from the intermediate position to the final position. Several MHs are used to solve the trajectory optimisation problem of robot manipulators while their performances are investigated. Based on this study, the best MH for robot trajectory planning is found while the results obtained from such a method are set as the baseline for further study of robot trajectory planning optimisation.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.