Issue |
MATEC Web Conf.
Volume 218, 2018
The 1st International Conference on Industrial, Electrical and Electronics (ICIEE 2018)
|
|
---|---|---|
Article Number | 02014 | |
Number of page(s) | 7 | |
Section | Control Electronics, Circuits, and Systems | |
DOI | https://doi.org/10.1051/matecconf/201821802014 | |
Published online | 26 October 2018 |
Development of Hand Gesture Based Electronic Key Using Microsoft Kinect
School of Electrical Engineering, Telkom University, 40257 Bandung, Indonesia
*
Corresponding author: arieframadhani48@gmail.com
Computer vision is one of the fields of research that can be applied in a various subject. One application of computer vision is the hand gesture recognition system. The hand gesture is one of the ways to interact with computers or machines. In this study, hand gesture recognition was used as a password for electronic key systems. The hand gesture recognition in this study utilized the depth sensor in Microsoft Kinect Xbox 360. Depth sensor captured the hand image and segmented using a threshold. By scanning each pixel, we detected the thumb and the number of other fingers that open. The hand gesture recognition result was used as a password to unlock the electronic key. This system could recognize nine types of hand gesture represent number 1, 2, 3, 4, 5, 6, 7, 8, and 9. The average accuracy of the hand gesture recognition system was 97.78% for one single hand sign and 86.5% as password of three hand signs.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.