Issue |
MATEC Web Conf.
Volume 209, 2018
International Conference on Combustion Physics and Chemistry (ComPhysChem’18)
|
|
---|---|---|
Article Number | 00008 | |
Number of page(s) | 4 | |
DOI | https://doi.org/10.1051/matecconf/201820900008 | |
Published online | 02 October 2018 |
Quantum chemical study of the mechanism of oxidation of C15H9 by atomic oxygen
1
Samara University, Samara, 443086, Russia
2
Lebedev Physical Institute, Samara, 443011, Russia
3
Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
* Corresponding author: mebela@fiu.edu
An important environmental problem related to the use of fossil fuels is the formation of soot during combustion. Mechanisms of soot oxidation, which alleviates its emission into the environment, are not fully understood. The reaction of O with a radical C15H9 may play an important role in combustion. In this article, the C15H9 molecule was chosen as a model of soot surface. The paper discusses various pathways resulting from the C15H9 + O reaction. Relative energies, frequencies and optimal geometries of the reactants, products, intermediates and transition states of the C15H9 + O reaction have been calculated using the quantum-chemical Gaussian and Molpro program packages. The reaction pathways leading to carbon monoxide CO elimination have been found and dscussed.
© The Authors, published by EDP Sciences, 2018
This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.