Issue |
MATEC Web Conf.
Volume 209, 2018
International Conference on Combustion Physics and Chemistry (ComPhysChem’18)
|
|
---|---|---|
Article Number | 00006 | |
Number of page(s) | 5 | |
DOI | https://doi.org/10.1051/matecconf/201820900006 | |
Published online | 02 October 2018 |
Measurements of rate constants of O2(b) quenching by CH4, NO, N2O at temperatures 300-800 K
1
Samara University, Samara, 443086, Russia
2
Lebedev Physical Institute of RAS, Samara, 443011, Russia
3
Florida International University, Miami, 33199, USA
4
Emory University, Atlanta, Georgia 30322, USA
* Corresponding author: outloot@yandex.ru
Electronically excited oxygen has an important place in the kinetic schemes of the processes taking place in the atmosphere, in the active medium of an oxygen-iodine laser, and in plasma-assisted combustion1. Over the past decades, a large amount of data on the rate constants of quenching O2(b) on a large number of collision partners has been accumulated. However, they mostly refer to the results of measurements at room temperature. In this paper, rate constants for the quenching of O2(b) by collisions with N2O, NO, and CH4 have been determined in the temperature range from 297 to 800 K, by the laser-induced fluorescence method. O2(b) was excited by pulses from a tunable dye laser, and the deactivation kinetics were followed via observing the temporal behavior of the b1Σg+→ X3Σg- fluorescence. From the analysis of experimental results, the following temperature dependencies of the quenching rate constants by these gases were obtained, and could be represented by the expressions: kNO=(1.77±0.2)×10-24×T3.5 exp(1138±37/T); kN2O=(2.63±0.14)×10-16×T1.5×exp(590±26/T) and kCH4=(3.54±0.4)×10-18×T1.5×exp(-220±24/T) cm3s-1. All of the rate constants measured at room temperature were found to be in good agreement with previously reported values.
© The Authors, published by EDP Sciences, 2018
This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.