Issue |
MATEC Web Conf.
Volume 203, 2018
International Conference on Civil, Offshore & Environmental Engineering 2018 (ICCOEE 2018)
|
|
---|---|---|
Article Number | 06013 | |
Number of page(s) | 8 | |
Section | Structures and Materials | |
DOI | https://doi.org/10.1051/matecconf/201820306013 | |
Published online | 17 September 2018 |
Tensile Behaviour of MWCNTs-Modified Epoxy Grout for Pipeline Repair
1
Faculty of Civil Engineering, Universiti Teknologi Malaysia,
81310 UTM Skudai, Johor,
Malaysia
2
Faculty of Civil Engineering and Earth Resources, Universiti Malaysia Pahang,
26300 Gambang Kuantan, Pahang,
Malaysia
3
Orbiting Scientific & Technology Sdn Bhd,
57000 Seri Petaling, Kuala Lumpur,
Malaysia
* Corresponding author: hhazirah2@live.utm.my
Infill material in the pipeline repair system works by filling the gap that is usually caused by corrosion before the fibre wrapper can be applied for pipeline recovery. In this study, nanocomposites were prepared by adding a small amount of Multi-walled carbon nanotubes (MWCNT) to an existing commercial epoxy resin grout aiming to evaluate their behaviour regarding neat epoxy grout as infill material in composite repair for steel pipeline subjected to external metal loss. The dispersion of the nanoparticles in the epoxy resin has been conducted through ultrasonic and calendaring technique. The results of modified epoxy grout were compared to neat epoxy grout to identify if the MWCNTs are advantageous to existing materials. By comparing the results, 0.5% of MWCNT filler has significantly improved the strength by almost 53.3%. In addition, the results also indicate that MWCNT filler has increased the modulus of elasticity of the infill material. Furthermore, the morphologies image displayed that MWCNTs has been well merged into the matrix, and made the fracture cross section rougher through sharing the stress. Therefore, it demonstrated the intrinsic potential of the CNTs in modifying the properties of the composites.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.