Issue |
MATEC Web Conf.
Volume 202, 2018
2018 International Conference on Aeronautical, Aerospace and Mechanical Engineering (AAME 2018)
|
|
---|---|---|
Article Number | 02002 | |
Number of page(s) | 5 | |
Section | Mechanical Design Manufacturing and Automation | |
DOI | https://doi.org/10.1051/matecconf/201820202002 | |
Published online | 26 September 2018 |
Theoretical Analysis on the Impact of Total Damping Ratio on the Power Output of an Electromagnetic Vibration Energy Harvester
1
School of Engineering and Physical Sciences, Heriot Watt University Malaysia
2
Intel PSG, PG 14, Plot 6, Bayan Lepas Technoplex, Medan Bayan Lepas, 11900 Penang, Malaysia
Vibration energy harvesting has emerged as a promising source of sustainable energy to power small electronics. This study investigates the effect of total damping on the power output of an electromagnetic vibration energy harvester. Analytical results show that an increase in the effective mass of the harvester increases the mechanical damping but decreases the electromagnetic damping. The total damping of the harvester displayed an increasing trend with the effective mass when the electromagnetic damping is lower that the mechanical damping but changed into a decreasing trend when the electromagnetic damping becomes larger than the mechanical damping. Findings also suggest that there is an optimum proof mass to beam mass ratio where the harvester would produce maximum power in both cases of where a constant and varying optimum load resistance were considered.
© The Authors, published by EDP Sciences, 2018
This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.