Issue |
MATEC Web Conf.
Volume 199, 2018
International Conference on Concrete Repair, Rehabilitation and Retrofitting (ICCRRR 2018)
|
|
---|---|---|
Article Number | 09003 | |
Number of page(s) | 5 | |
Section | Structural Repair Materials and Systems | |
DOI | https://doi.org/10.1051/matecconf/201819909003 | |
Published online | 31 October 2018 |
A study on the bond behavior of different FRCM systems
1
PhD candidate, Department of Civil and Architectural Engineering, College of Engineering, Qatar University, Doha, Qatar
2
Professor, Department of Civil and Architectural Engineering, College of Engineering, Qatar University, Doha, Qatar
* Corresponding author: adel.younis@qu.edu.qa
Fabric-reinforced cementitous matrix (FRCM) composites are usually applied on the concrete surface for the purpose of strengthening reinforced concrete structures. However, the efficiency of FRCM strengthening is notably affected by the bond between the FRCM system and concrete substrate. In view of that, the current paper presents the results of a preliminary experimental study carried out to investigate the bond characteristics between FRCM composites and concrete. Six number of specimens, each consisted of a 150-mm concrete cube with a double-shear connection to an FRCM system, were subjected to direct-shear loading test. The parameters investigated include (a) FRCM material (carbon, polyparaphenylene benzobisoxazole (PBO), and glass); and (b) Bond length (75 mm or 100 mm). The FRCM systems typically included a single layer of fabric with the associated mortar, and the bond width was uniformly taken as 100 mm. The test results revealed that the bond capacity is enhanced with an increase in the FRCM bonded length. The PBO-FRCM showed the highest bond capacity between FRCM composite and concrete substrate among the three systems. The modes of failure observed in carbon-, PBO-, and glass-FRCM bond tests are fabric delamination, FRCM mortar/concrete debonding, and fabric rapture, respectively. The PBOand glass-FRCM bond tests thus exhibited a more brittle behavior at failure than that of the carbon-FRCM counterpart.
© The Authors, published by EDP Sciences, 2018
This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.