Issue |
MATEC Web Conf.
Volume 199, 2018
International Conference on Concrete Repair, Rehabilitation and Retrofitting (ICCRRR 2018)
|
|
---|---|---|
Article Number | 06007 | |
Number of page(s) | 7 | |
Section | Condition Assessment and NDT | |
DOI | https://doi.org/10.1051/matecconf/201819906007 | |
Published online | 31 October 2018 |
Detection of near-surface reinforcement in concrete components with ultrasound
HTW Berlin – University of Applied Sciences Berlin, Non-destructive Testing in Civil Engineering Department, 12459 Berlin
* Corresponding author: sarah.vonk@htw-berlin.de
Ultrasonic testing of concrete has grown in importance considerably in recent years in non-destructive testing in civil engineering (NDT-CE). In the past, the main focus was on the imaging of the internal construction of steel and prestressed concrete components. On the other hand, comparatively little attention was paid to the location of near-surface reinforcement and concrete cover measurement. In this research, it is shown to what extent ultrasound is suitable for the detection of near-surface reinforcement in addition to magnetic inductive methods. The measurements were carried out with the newly developed Pundit 250 Array from the company Proceq and with the measuring devices of the company Acsys, the A1220 Monolith and the A1040 Mira. The ultrasound data was analysed with the vendor-independent software InterSAFT of the University of Kassel. Systematic investigations were carried out on test specimens with a variety on the concrete cover, the diameter of the reinforcement and the reinforcement ratio in the form of mesh reinforcement close to the surface. The detectability and accuracy of the concrete cover were set in relation to the concrete cover, wavelength and reinforcement diameter, with the result that more detailed rules for the detection of reinforcement are formulated for the user, instead of the known λ/2-criterion.
© The Authors, published by EDP Sciences, 2018
This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.