Issue |
MATEC Web Conf.
Volume 199, 2018
International Conference on Concrete Repair, Rehabilitation and Retrofitting (ICCRRR 2018)
|
|
---|---|---|
Article Number | 04010 | |
Number of page(s) | 5 | |
Section | Reinforcement Corrosion: Mechanisms, Prediction and Modelling | |
DOI | https://doi.org/10.1051/matecconf/201819904010 | |
Published online | 31 October 2018 |
Effect of the degree of corrosion on bond performance of Cement Polymer Composite (CPC) Coated steel rebars
Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, India
* Radhakrishna G. Pillai: pillai@iitm.ac.in
Currently, large infrastructures (bridges, highways, etc.) are designed for more than 100 years. To achieve long service life, coated rebars (mostly, cement polymer composite (CPC) coated rebars) are being used to enhance the corrosion resistance. However, inadequately coated rebars can lead to premature corrosion. This can also affect the bond between the rebar and the concrete. To assess the effect of CPC coating on bond strength, pull-out specimens of (150×150×100) mm with 12 mm diameter rebar with 100 mm embedded length were cast and tested. For this, three replica specimens with two types of reinforcement namely, i) Uncoated steel ii) CPC coated steel were cast. To induce corrosion, additional five specimens with CPC coated steel rebars were cast with premixed chloride and cured for 28 days. During the curing period, continuous monitoring of corrosion potential and rate was done and degree of corrosion was assessed. The effect of degree of corrosion on bond of steel-concrete-coating interface was quantified. The CPC coated rebars without corrosion exhibited 10% bond reduction. CPC coated rebars with corrosion exhibited 30-70% reduction in bond strength. Also, the corrosion is found to adversely influence the stiffness of the bond.
© The Authors, published by EDP Sciences, 2018
This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.