Issue |
MATEC Web Conf.
Volume 199, 2018
International Conference on Concrete Repair, Rehabilitation and Retrofitting (ICCRRR 2018)
|
|
---|---|---|
Article Number | 04002 | |
Number of page(s) | 6 | |
Section | Reinforcement Corrosion: Mechanisms, Prediction and Modelling | |
DOI | https://doi.org/10.1051/matecconf/201819904002 | |
Published online | 31 October 2018 |
Towards understanding corrosion initiation in concrete – influence of local concrete properties in the steel-concrete interfacial zone
1
ETH Zurich, Institute for Building Materials (IfB), ETH Hönggerberg, 8093 Zurich, Switzerland
2
University of Cagliari, Department of Chemical and Geological Science, 09100 Cagliari, Italy
* Corresponding author: cboschmann@ifb.baug.ethz.ch
Chloride-induced corrosion is the most common deterioration process for reinforced infrastructure objects. Improving the understanding of the conditions for initiation of localized corrosion is urgently needed. Research is focused on the influence of “defects” at the steel-concrete interface (SCI), as these weak points might be responsible for corrosion initiation. In contrast to numerous studies with “lab concrete”, this study reports results from reinforced concrete cores drilled from old infrastructure objects containing a non-corroding rebar. In contrast to laboratory studies, this guarantees real conditions at the SCI comprising also irregularities such as air voids, plastic settlement voids, cracks, etc. This allows to study chloride-induced corrosion in real conditions and to determine the so-called “critical chloride content” Ccrit. Visual inspection of the SCI enables to establish (or not) influences of the local conditions at the SCI and Ccrit. It was found that Ccrit strongly decreased with the carbonation depth, even if the carbonation front had not reached the steel. Moreover, coarse air voids and cracks were in this study not particularly susceptible sites for corrosion initiation.
© The Authors, published by EDP Sciences, 2018
This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.