Issue |
MATEC Web Conf.
Volume 198, 2018
2018 Asia Conference on Mechanical Engineering and Aerospace Engineering (MEAE 2018)
|
|
---|---|---|
Article Number | 04005 | |
Number of page(s) | 8 | |
Section | Electronic Engineering and Mechatronics | |
DOI | https://doi.org/10.1051/matecconf/201819804005 | |
Published online | 12 September 2018 |
Numerical Analysis of the Adiabatic and Quasi Steady Model of Free Piston Stirling Engine
Offshore Renewable Energy Engineering Centre, School of Water, Energy and Environment, Whittle Building 52, Cranfield University, Bedfordshire MK43 0AL
This study presents the numerical simulation of the adiabatic and Quasi steady models of the free piston Stirling engine, the mathematical equations are presented, and design parameters are determined and used as input for the simulation. The simulations are computed under adiabatic and Quasi operating conditions, and their output results are compared. The similarities and differences in the model predictions in terms of the pressure to volume diagram, the amplitudes of the pistons and displacer, temperature, efficiency, power output and stable operation are observed and investigated. The models are validated against the experimental output and the results show a good agreement with the experiment. The adiabatic model predicted an output power of 862 W, while Quasi steady model predicted more accurate output power of 997W at frequency of 30 Hz in relation to the 1000 W of the experimental output. The effects of the variation of engine’s parameters on the output power are also observed and presented.
© The Authors, published by EDP Sciences, 2018
This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.