Issue |
MATEC Web Conf.
Volume 197, 2018
The 3rd Annual Applied Science and Engineering Conference (AASEC 2018)
|
|
---|---|---|
Article Number | 04002 | |
Number of page(s) | 5 | |
Section | Material Science | |
DOI | https://doi.org/10.1051/matecconf/201819704002 | |
Published online | 12 September 2018 |
Effect of heat treatment on bio-corrosion rate of steel structure (API 5L) in marine evironment
1
Institut Teknologi Sepuluh Nopember, Department of Ocean Engineering, Faculty of Marine Technology, Indonesia
2
Institut Teknologi Sepuluh Nopember, Department of Environmental Engineering, Faculty of Civil, Environmental and Geo Engineering, Surabaya, Indonesia
* Corresponding author: hermankelautan@gmail.com
One of the cause of corrosion is the attachment of bacteria or commonly called as bio-corrosion or Microbial Influenced Corrosion (MIC). This aim of the research was to determine effect of heat treatment process on the bio-corrosion rate of API 5L steel. The treatments were namely, without heat treatment as a control, and with the heat treatment (austempering process). The austenizing process was conducted before the austempering process. All specimens without and with the heat treatment were be used on bio-corrosion test. The bio-corrosion testing was conducted with immersion corrosion test method with artificial seawater salinity of 35‰. Three of species bacteria were be used, Escherichia coli, Pseudomonas fluorescens, and Thiobacillus ferrooxidans. The result showed the corrosion rate on API 5L steel without bacteria was 2.7558 mpy, but it reached 3.4273, 3.6062 and 3.7699 mpy after addition with E. coli, P. fluorescens, and T. ferrooxidans, respectively. It was indicating that bacteria can accelerate the corrosion rate. The highest bio-corrosion rate due to T. ferrooxidans without heat treatment process was 3.7699 mpy. Meanwhile, the bio-corrosion rate due to T. ferrooxidans with austempering process was 3.5046 mpy. It was indicating that heat treatment can decrease the bio-corrosion rate.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.