Issue |
MATEC Web Conf.
Volume 196, 2018
XXVII R-S-P Seminar, Theoretical Foundation of Civil Engineering (27RSP) (TFoCE 2018)
|
|
---|---|---|
Article Number | 04037 | |
Number of page(s) | 6 | |
Section | Building Materials, Technologies, Organization and Management in Construction | |
DOI | https://doi.org/10.1051/matecconf/201819604037 | |
Published online | 03 September 2018 |
Transient method measured thermal properties of concrete with microspheres and latex based addition
Warsaw University of Technology, Faculty of Civil Engineering, Mechanics and Petrochemistry,
Łukasiewicza 17,
09-402 Płock,
Poland
*
Corresponding author: wojciech.kubissa@pw.edu.pl
The goal of the performed research was to determine the influence of microspheres from fly ash and the latex based addition on the thermal properties of concrete. The tested additions were used in two different proportions each and they were combined with each other. As a reference two series of concrete were used: one without any addition and another with 0.2% of air entraining agent. The thermal properties were measured using transient method with ISOMET 2114 apparatus. No clear trends were observed in case of the results of the measurements of the thermal diffusivity and the volumetric heat capacity. While the results of the thermal conductivity coefficient show that both additions has a potential of lowering the thermal conductivity but they are not so efficient as air entraining agent.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.