Issue |
MATEC Web Conf.
Volume 195, 2018
The 4th International Conference on Rehabilitation and Maintenance in Civil Engineering (ICRMCE 2018)
|
|
---|---|---|
Article Number | 02003 | |
Number of page(s) | 9 | |
Section | Structural Engineering | |
DOI | https://doi.org/10.1051/matecconf/201819502003 | |
Published online | 22 August 2018 |
Flexural performance of HPFRC plates using PPC and variation of steel fiber composition
1
Department of Civil Engineering, Faculty of Engineering, University of Jember, Jember 68121, Indonesia.
2
Department of Civil Engineering, Faculty of Engineering, University of Brawijaya, Malang 65145, Indonesia
* Corresponding author: murti_krisna.teknik@unej.ac.id
High-Performance Fiber-Reinforced Concrete (HPFRC) is widely used in infrastructure applications due to its mechanical properties such as fracture toughness, ductility, control of crack width, and plate thickness reduction compared to normal concrete. However, there are still doubts about the strategy to develop the concrete technology to meet the sustainability requirements in the construction process. This study aims to investigate the improvement of flexural performance on HPFRC plates that utilize Portland Pozzolana Cement (PPC) with various compositions of steel fiber. This research uses PPC, Lumajang sand, gravel from the Malang area, water, silica fume, superplasticizer, and steel fiber. Tests were performed on 1600 mm x 900 mm x 80 mm HPFRC plates. The average HPFRC compressive strength is 59.59 MPa. The splitting tensile strength is 3.54 MPa. Steel fibers vary from 0.2% to 1.0% of the HPFRC plate volume. The test was performed with the three-point bending method. Observations were made to the load capacity, deflection and the crack pattern of the HPFRC plates. The study shows that the optimum bending strength failure of the HPFRC plate is obtained when the steel fiber composition is about 0.8% with an external load value of 31.76 kN and a deflection of 14.99 mm.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.