Issue |
MATEC Web Conf.
Volume 192, 2018
The 4th International Conference on Engineering, Applied Sciences and Technology (ICEAST 2018) “Exploring Innovative Solutions for Smart Society”
|
|
---|---|---|
Article Number | 03048 | |
Number of page(s) | 4 | |
Section | Track 3: Food, Chemical and Agricultural Engineering | |
DOI | https://doi.org/10.1051/matecconf/201819203048 | |
Published online | 14 August 2018 |
Effect of doping Fe/Cu/Ti on WO3 on furfural degradation
Department of Chemical Engineering, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom, 73000
* Corresponding author: Termtanun_m@su.ac.th
This research improved tungsten oxide catalysts to increase efficiency in photocatalytic degradation of furfural under visible light. The aim of this research was to compare the efficiency of modified tungsten oxide with undoped and commercial tungsten oxide. Tungsten oxide nanoparticles were doped with 3 single metals, which were Fe/Cu/Ti at 1%wt, 2%wt, and 3%wt, synthesized by flame spray pyrolysis technique (FSP) and then characterization by X-Ray Diffraction (XRD), N2 adsorption/desorption (BET surface area analysis), UV-Vis Spectroscopy (UV-Vis). Photocatalytic degradation experiments using doped WO3 were carried out with 5 ppm initial concentration of furfural solution using 0.6 M catalyst concentration under visible light. From the results, FSP-synthesized WO3 has better efficiency in furfural degradation than the commercial WO3. All catalysts have mesoporous structure because an average pore size is in the range of 6-10 nm. Among all synthesized and doped WO3, it can be concluded that 3%wt Fe-doped tungsten oxide provides the highest acceleration rate in photocatalytic degradation of furfural.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.