Issue |
MATEC Web Conf.
Volume 191, 2018
1st International Conference on Non-Destructive Evaluation of Composite Structures (NDECS 2017)
|
|
---|---|---|
Article Number | 00008 | |
Number of page(s) | 4 | |
DOI | https://doi.org/10.1051/matecconf/201819100008 | |
Published online | 10 August 2018 |
Effects of plies orientations and initial geometric imperfections on buckling strength of a composite stiffened panel
1
Physics of Condensed Matter Laboratory, Faculty of Sciences, Tetouan 93002, Morocco
2
Systems of Communication and Detection Laboratory, ENSA Tetouan, 93030 Tetouan, Morocco
a
Corresponding author : ikramfeddal@gmail.com
The use of composite stiffened panels is common in several activities such as aerospace, marine and civil engineering. The biggest advantage of the composite materials is their high specific strength and stiffness ratios, coupled with weight reduction compared to conventional materials. However, any structural system may reach its limit and buckle under extreme circumstances by a progressive local failure of components. Moreover, stiffened panels are usually assembled from elementary parts. This affects the geometric as well as the material properties resulting in a considerable sensitivity to buckling phenomenon. In this work, the buckling behavior of a composite stiffened panel made from carbon Epoxy Prepregs is studied by using the finite element analysis under Abaqus software package. Different plies orientations sets were considered. The initial distributed geometric imperfections were modeled by means of the first Euler buckling mode. The nonlinear Riks method of analysis provided by Abaqus was applied. This method enables to predict more consistently unstable geometrically nonlinear induced collapse of a structure by detecting potential limit points during the loading history. It was found that plies orientations of the composite and the presence of geometric imperfections have huge influence on the strength resistance.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.