Issue |
MATEC Web Conf.
Volume 174, 2018
3rd Scientific Conference Environmental Challenges in Civil Engineering (ECCE 2018)
|
|
---|---|---|
Article Number | 02003 | |
Number of page(s) | 9 | |
Section | Material Engineering, Waste Management in Civil Engineering | |
DOI | https://doi.org/10.1051/matecconf/201817402003 | |
Published online | 26 June 2018 |
The effect of nano-additive TiO2 on the failure process of self-compacting concrete assessed using the acoustic emission method
Faculty of Civil Engineering, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
* Corresponding author: pawel.niewiadomski@pwr.edu.pl
Due to the new challenges posed to engineering constructions, as well as the principles of sustainable development, many laboratories around the world are carrying out works to improve the basic structural material that is concrete. There has recently been a lot of interest in modifying concrete with nano-sized particles. Literature reviews indicate that their addition significantly improves the physical and mechanical properties of the concrete that was obtained with their use. Until now, there is no knowledge of the effect of nano-additives on the process of destroying temporarily compressed concrete. One test method that enables the parameters that describe the stress failure of concrete to be determined is the acoustic emission method. This work fills the gap in the literature and presents the results of the author's own research on the impact of the use of different amounts of nano-additive TiO2 on the failure process of selfcompacting concrete that was made solely on the basis of granite aggregate. The stress failure of the tested concrete was described using the stress levels (determined using the acoustic emission method) that initiate the cracking σi and critical stresses σcr that delimit the tested process. The descriptors that were used for this purpose are the rate of counts and the average effective value of the acoustic emission signal.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.