Issue |
MATEC Web Conf.
Volume 174, 2018
3rd Scientific Conference Environmental Challenges in Civil Engineering (ECCE 2018)
|
|
---|---|---|
Article Number | 01004 | |
Number of page(s) | 12 | |
Section | Sustainable Civil Engineering, Impact on Environment, Durability and Protection of Buildings and Structures, Energy Consumption in Civil Engineering, Unconventional Energy Sources | |
DOI | https://doi.org/10.1051/matecconf/201817401004 | |
Published online | 26 June 2018 |
The use of sand deposits in buildings for energy storage
University of Opole, Independent Department of Process Engineering, ul. Dmowskiego, 7-9, 45-365 Opole, Poland.
* Corresponding author: ratuszny@uni.opole.pl
The aim of the research is to prepare data for the design of heat stores with sand filling. In buildings without basement, spaces between foundation walls are filled with material easily compacted, which forms a solid and durable basis for the ground level of the building. As a rule, this material is sand of various grain size, and foundation walls are insulated. In this way, a space filled with a granular material is formed, which, with a properly designed heat exchanger attached, may be used as sensible-heat storage. Such a store makes a good lower level source for heat pumps - source of heat at the time of low temperatures outside, which significantly raises the coefficient of efficiency of the system. Low construction cost of the heat exchanger is an additional argument for the use of the space between the foundation walls for the purpose of building a heat store. This paper presents the results of studies that allow of the appropriate design of the heat exchanger in a heat store with a granular deposit. The deposit temperature changes in time have been studied, dependent on the distance from the source of heat and humidity of the material. Study was carried out for the sands used for filling the space between the foundation walls.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.