Issue |
MATEC Web Conf.
Volume 173, 2018
2018 International Conference on Smart Materials, Intelligent Manufacturing and Automation (SMIMA 2018)
|
|
---|---|---|
Article Number | 03040 | |
Number of page(s) | 4 | |
Section | Digital Signal and Image Processing | |
DOI | https://doi.org/10.1051/matecconf/201817303040 | |
Published online | 19 June 2018 |
Comprehension and Thinking of Complex Network Construction and Clustering Based on Neural Network Algorithm
School of Economics and Management of Beijing University of Posts and Telecommunications, Beijing 100876, China
With the development of computer technology and the enhancement of people's cognition of the world, more and more scholars have been focusing on the research of complex networks. At the same time, the emerging machine learning neural network algorithm has become a powerful tool for various researchers. This paper mainly discusses the construction and clustering of complex networks based on neural network algorithm. Firstly, the development history and main application fields of neural network are introduced. Then, several common methods of complex network clustering are summarized, and then the limitations of these clustering methods are discussed. At last, it proposes to improve the construction of neural network through the concept of small world in complex network and enhance the effect of complex network clustering by the characteristics of neural network algorithm, including the accuracy, reliability, stability, speed, etc.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.