Issue |
MATEC Web Conf.
Volume 173, 2018
2018 International Conference on Smart Materials, Intelligent Manufacturing and Automation (SMIMA 2018)
|
|
---|---|---|
Article Number | 02041 | |
Number of page(s) | 4 | |
Section | Automation and Nontraditional Manufacturing | |
DOI | https://doi.org/10.1051/matecconf/201817302041 | |
Published online | 19 June 2018 |
A Control Strategy of a Single-phase H6-type Grid-connected Inverter with Low Harmonic Current
Department of Electrical Engineering and information, Southwest Petroleum University, Chengdu Sichuan, China
* Corresponding author: Chunxu28@foxmail.com,
{zhizihua328, 1084178944, 1571495993}@qq.com
In order to reduce the total harmonic distortion (THD) of the grid-connected current caused by the high-frequency switching of the inverter, this paper combines the high efficiency single-phase H6-type inverter with LCL filter. The double closed-loop control method that consists of grid-connected current outer loop and capacitor current inner loop is put forward, by which a resonance peak of a low damping LCL filter is eliminated. In the grid-connected current outer loop, quasi proportion resonant (QPR) controller is adopted to overcome the steady-state error and weak anti-jamming capability in traditional PI controller. Finally, a simulation model is built in SIMULINK to verify the research. The simulation results show that, based on the single-phase H6-type inverter and LCL filter, the double closed-loop QPR control strategy can achieve the static error free tracking control of grid-connected current, which makes the system more stable and reduces the THD of grid-connected current effectively.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.