Issue |
MATEC Web Conf.
Volume 173, 2018
2018 International Conference on Smart Materials, Intelligent Manufacturing and Automation (SMIMA 2018)
|
|
---|---|---|
Article Number | 02020 | |
Number of page(s) | 6 | |
Section | Automation and Nontraditional Manufacturing | |
DOI | https://doi.org/10.1051/matecconf/201817302020 | |
Published online | 19 June 2018 |
Multi-agent ant colony optimization for vehicle routing problem with soft time windows and road condition
1
School of Automation, Guangdong University of Technology, Guangzhou, 510006, China
2
Information and Network Centre, Jiaying University, Meizhou, 514015, China
3
Department of Health Science and Technology, Aalborg University, Aalborg 9220, Denmark
* Corresponding authorhuang_gewen@163.com
In this paper we consider two important objects of transportation, cost and customer satisfaction. The latter mainly depends on vehicle arrival time and expecting time of the customer. Whereas in the reality, road conditions varies at different time periods and affect the vehicle travelling speed. Meanwhile, transport cost, including fuel consumption, relate to load of vehicle. Correspondingly, mathematical model of vehicle routing problem with soft time windows and road factor (VRPSTWRF) was established in which transport cost, fuel consumption and customer satisfaction are considered. Multi-agent ant colony optimization is proposed in which the features of agent perceiving and reacting to the environment are applied reasonably. Adaptive information heuristic factor and pheromone expectation heuristic factor changing mechanism is used to improve global convergence ability. Pheromone is updated adaptively, the fuel consumption rate also considered, to ensure the convergence speed. 3-opt strategy was introduced to improve local search ability. Thus, multi-agent ant colony optimization (MACO) was constructed and used to solve 40-customer VRPSTWRF model. Experiments show that MACO proposed is feasible and valid.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.