Issue |
MATEC Web Conf.
Volume 169, 2018
The Sixth International Multi-Conference on Engineering and Technology Innovation 2017 (IMETI 2017)
|
|
---|---|---|
Article Number | 01040 | |
Number of page(s) | 5 | |
DOI | https://doi.org/10.1051/matecconf/201816901040 | |
Published online | 25 May 2018 |
Experimental study and finite element analysis on shear lag effect of thin-walled curved box beam under vehicle loads
School of Resource and Civil Engineering, Wuhan Institute of Technology, 430074, Wuhan, China
a Corresponding author: 2319944517@qq.com
Shear lag effects of curved box beam under vehicle loads are investigated by using three-dimensional finite element method, where 4 parameters of vehicle loads, load size, vehicle speed, vehicle load position, load types, are considered. The change rules of stress distribution and shear lag coefficients of upper flange at mid-span are obtained when the loads move to the mid-span. The results indicate that under vehicle loads, the peak shear lag coefficients is at the junction between the flange and web, shear lag effect is prominent, shear lag effect is greatly influenced by vehicle speed and vehicle load position, while load size and load types almost don’t affect shear lag coefficients but do affect the stress. The model experiment of a cantilever curved box beam is carried out to compare with finite element analysis, and the error between them is small, which testify the validity and reliability of finite element model.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.